Neutron star merger remnants: Braking indices, gravitational waves, and the equation of state
Abstract
The binary neutron star merger GW170817/GRB170817A confirmed that at least some neutron star mergers are the progenitors of short gamma-ray bursts. Many short gamma-ray bursts have long-term x-ray afterglows that have been interpreted in terms of post-merger millisecond magnetars—rapidly rotating, highly magnetised, massive neutron stars. We review our current understanding of millisecond magnetars born in short gamma-ray bursts, focusing particularly three main topics. First, whether millisecond magnetars really do provide the most plausible explain for the x-ray plateau. Second, determining and observing the gravitational-wave emission from these remnants. Third, determining the equation of state of nuclear matter from current and future x-ray and gravitational-wave measurements.
- Publication:
-
Xiamen-CUSTIPEN Workshop on the Equation of State of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy
- Pub Date:
- July 2019
- DOI:
- arXiv:
- arXiv:1905.01387
- Bibcode:
- 2019AIPC.2127b0025L
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- General Relativity and Quantum Cosmology
- E-Print:
- Conference Proceedings of the Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy (January 3 - 7, 2019, Xiamen, China)